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Abstract 

This paper contains an analysis of the squeeze-film 
damping in micro-electromechanical devices having a 
planar microstructure containing a repetitive pattern 
of oval holes. The planar microstructures containing 
oval holes assure a better protection against dust par- 
ticles and water drops than the microstructures having 
circular holes. Consequently, they should be preferred 
in designing protective surfaces for microphones work- 
ing in natural environment. 

Analytical formulas are provided for designing a pla- 
nar microstructure with a periodic system of staggered 
holes to create a structure having minimum squeeze- 
1

film damping with an assigned open area. 
For the planar microstructures containing aligned 

oval holes an edge correction is given which accounts 
for the finite size of real structures. 

INTRODUCTION 

The sensing mechanism of many micro-electro- 
mechanical systems (MEMS) (such as microphones and 
microaccelerometers) is based on the capacitive detec- 
tion principle. Many of these devices consist of par- 
allel plate capacitors having a moving electrode (a di- 
aphragm or proof mass) and a backplate. The small 
space between these elements is filled with fluid (air). 
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In some devices, in order to protect the diaphragm from 
external damage (for microphones working in natural 
environment) a certain perforated planar microstruc- 
ture may be placed in the front of the microphone at 
a small distance from the diaphragm. In some design 
solutions a single perforated plate is used for both 
functions. 

When the diaphragm is vibrating in the normal di- 
rection, the air film develops a pressure disturbance 
which opposes its motion (viscous air-gap mechanical 
resistance or squeezefilm damping.) In order to de- 
crease the squeeze-film damping effect the backplat e 
is often fabricated in the form of a perforated plate 
containing a periodic system of holes. MEMS also typ- 
ically need etch holes to reduce the time required to 
release the micromechanical structure during the final 
release etch. A simplified model of the air motion for 
the case of circular holes has been considered by Skvor 
in [I]. He succeed in obtaining a simple and useful for- 
mula for the total pressure which has been widely used 
for designing microphones. 

Most applications employ only circular or square 
holes [Z], [3]. The numerical simulation in this case is 
simple and for many MEMS gives the desired data for 
design purposes. Our analysis has revealed that other 
geometrical shapes of holes such as ovals are also suit- 
able for decreasing the squeeze-film damping on the 
planar microstructures. As elongated ovals assure a 
better protection against dust particles and water drops 
(assumed generally as quasispherical) than the circu- 
lar holes, in this paper we shall focus on the study of 
viscous damping for a repetitive pattern of oval holes. 
This type of geometry needs a more elaborate analy- 
sis of the viscous damping than that required for the 
circular holes. 

The squeeze-film of air in a planar microstruc- 
ture can be analyzed considering the Reynold's equa- 
tion in a domain containing a periodic system of holes. 
Section 3 contains results of a numerical simulation of 
the squeezefilm viscous damping of a microstructure 
containing a staggered (off-set) system of oval holes. 
In presenting the results we show how to redesign a 
given planar microstructure having as its basic pat- 
tern uniform spaced staggered circles into a planar mi- 
crostructure based on oval holes with smaller squeeze- 
film damping for the same open area. The design para- 
meters of the "initial microstructure" (containing cir- 
cular holes) can be determined analytically and ana- 
lytical formulas are provided for designing the "final" 
microst ruct ure involving oval holes. The analytical for- 
mulas are based on the fitting of the data resulting from 
numerical simulations. The subsection including the 
designing formulas can be read independently of the 
other sections and the paper gives an example showing 
how the method works. 

In Section 4 a simple method accounting for the 
finiteness of the real plates in the case of microstruc- 
tures having aligned oval holes is presented. The 
opened edge correction consists of increasing the area 
of the edge cells until their total pressure equals the to- 
tal pressure of an inner cell. An example of application 
of the edge correction is provided. 

Besides the squeezed-film damping, the length of the 
holes equal to the thickness of the plate gives a s u p  
plementary damping due to the resistance of the holes. 
The analysis presented in this paper neglects the holes' 
resistance. Therefore, it can be directly applied in the 
case of thin plates. Also, the procedure developed for 
computing the squeeze film damping can be used in an 
integrated scheme for determining the total damping 
of the microstructure [4]. 

T H E  PRESSURE EQUATION 

Stating of the problem 

We consider an infinite plane plate having a system 
of holes which is invariant under the transformations 
of the group consisting of reflections, in two orthogo- 
nal lines, and translations by vectors which are multi- 
ples of the vectors cl and ca as shown in (Fig. la). We 
isolate the basic domain D, which, when acted on by 
the transformations of the group can cover the whole 
plate. We assume that the holes are of oval form. By 
oval we mean a rectangle with two half-circles added to 
two opposite sides. As a particular structure we have 
also the circular holes case. 

Micromechanical dynamics of the perpendicularly 
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Figure la. The cross-section of the air gap for the 
staggered oval hole case 

oscillating plane structure is strongly influenced by the 
viscous damping of the squeezed air medium. The mo- 
tion of the fluid, limited by the diaphragm and back- 
plate, can be described by the Navier-Stokes equations 
in a lubrication approximation [ 5 ] .  The problem can 
be reduced to the Reynolds' equation for the physical 
pressure p(x, y) 

By V we denote the plane domain external to the sys  
tem of holes; p is the fluid viscosity, do-the nominal air- 
gap size and w -the normal velocity of the diaphragm. 

As the holes are in contact with the free atmosphere, 
on the rim of the holes aDD we impose the boundary 
condition 

P ( X , Y )  =pa,  o n a D ~ 7  @I 
where pa is the atmospheric pressure. We introduce 
dimensionless spatial variables x = Loxf, y = Loy1 
(where Lo denotes a characteristic length) and the re- 
duced pressure p' (x, y) by the relationship 

We drop the primes and try to remember that we 
are working in dimensionless variables. We obtain the 
equation 
(a' - r' ,o) 

Figwe Ib. The governing equation and bornday conditions 
on the canonic domain for the off-set oval hole case 

a2p a2p 
@+&2 = 1, on D'. 

where the domain D' results from 2) by similarity 
transformation given by the scaling relationship. The 
boundary condition becomes 

p = 0, on aD& (the rim of the holes) ( 5 )  

The pressure gradient is zero in a direction that is nor- 
mal to any line of symmetry of the planar microstruc- 
ture. On all symmetry lines (denoted by dDN) we can 
write a new boundary condition as 

ap -- - 0, on aVh (the symmetry lines) (6) 
an  

The mechanical quantity of interest in solving this 
problem is the squeeze film damping given by the total 
pressure (force) upon the diaphragm. The force on a 
cell C (defined as the influence domain of a hole) is 
obtained by integrating the pressure in eq. (3) over the 
area and is given by 
Copyright © 2007 by ASME



Fig. 2a m e  hexagonal influence domain of a hole, 
its equivalent circle and the basic domain 4 

where the pressure coefficient Cp is 

The canonical domain Df results from the basic domain 
D by the scaling relationship as shown in (Fig. lb). 

SIMULATION OF THE SQUEEZE-FILM DAMPING I N  T H E  
CASE OF STAGGERED HOLES 

Basic relationships 

The design of the backplate for capacitive micro- 
phones is typically obtained by means of Skvors' for- 
mula [I]. Thus, for the system of off-set uniform spaced 
circular holes of ri-radius in Fig. 2a the hexagonal in- 
fluence region of a hole is approximated by a circle of 
0.525 li radius, li being the distance between the centers 
of two neighboring circles, having the same area. 

A more precise calculation of the damping of the 
system of staggered circles can be obtained by solv- 
ing the boundary-value problem (4), (5), (6) for 
the canonical domain Di in Fig.2b. The force 
F(~) on a unit area of the initial system is given 
by (we consider Lo = li for the initial structure) 
Fig. 2b The canonical domain 
corresponding to the domain in Fig. 2a 

where N(~ )  is the number of circles (holes) on a unit 

and c:) is the pressure coefficient given by formula (8). 
The radii of the circular arcs in the canonical domain 
D: are r: and we have 

To obtain a device with a smaller viscous damping 
we consider the canonical domain D; in Fig.3a and the 
holes pattern resulting from this basic domain by sym- 
metries with respect to coordinate axis, translations 
and similarity transformations Fig.3b. The holes have 
now an oval form and we denote by lf the distance be- 
tween the centers of two neighboring ovals (taken also 
as reference length for the final structure). The number 
of holes on a unit area u20f the final structure ~ ( f )  is 

2 ~ ( f )  = - 
4 1  U2 

(11) 

and, corres~ondingl~, the force F ( ~ )  (on a unit area) 
has the form 

FU) = N(/)F 3 
f =  d ;N  f P 
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Fig. 3a The canonical domain D ; 

The radius of the circular arcs in domain D; is r; = 

r f  / I f ;  the condition that the two structures have the 
same area ratio AR yields 

Finally, the ratio of the holes density in the two systems 
is 

~ ( f )  1; 
- 

N(4 1; 

Hence 
r f  = i f  r; (14) 

Once the initial geometry ( ri and l i )  is given and the 
ratio of the holes densities is specified, the relations 
(10-14) give the geometry of the oval ( r f  and I f ) .  The 
total pressure on the final structure is determined by 
relation (15) in terms of pressure coefficients and the 
total pressure on a unit area of the initial system. 
Fig. 3 b TheJinal structwe 

Determination of the Dressure coefficients 

For obtaining the pressure coefficients c:), cLf) we 
use formula (8) which requires the preliminary determi- 
nation of the functions p(" (x, y) , p(f)  (x, y)solutions of 
the boundary-value problem (4) (5) (6) for the domains 
Di, D; , respectively. Since we will use these coeffi- 
cients for designing purposes, these problems have to be 
solved many times. This is why we decided to consider 
a computationally efficient Boundary Element Method 
simulation which provides the values of the function 
and of its normal derivative along the boundary. Once 
these quantities are determined the total pressure upon 
the canonical domain can be also obtained analytically. 

The ratio of the pressure coefficients c$)/c;~) ob- 
tained by numerical simulation is plotted in Fig.4 ver- 
sus area ratio AR for the cases: a/al = 0.6 : 0.1 : 0.9 
(asterisks). Further analysis reveals that the ratio of 
the pressure coefficients can be fitted well by a third 
order polynomial: 

where the coefficients e; are given in Table l.Also, we 
have plotted in Fig.4 the least squares fitting by a cubic 
Copyright © 2007 by ASME



Table I .  The coejFcients el' for a:=a [aI and j 

polynomial of the computed values for the ratio of the 
pressure coefficients (continuous line). 

The design relationshi~s and examole of amlication 

We summarize now the formulas for designing a 
plane microstructure based on an oval pattern of holes. 
In order to show how these formulas may be applied 
we consider also an example. 

Preliminary data 

p = 1.8 N s /m2  the viscosity of the air 

do = 0.005mm the width of the air gap at equilib- 
rium position (the nominal air-gap size) 

AR = 0.2 the surface fraction occupied by the 
holes (the area ratio) 

Design parameters for the case of circular holes 

N(,) = 250 the number of the circdar holes/mm2 

Determine 

ri-the radius of cirmlar holes 
Fig A The ratio of the pressure coefficients: 
AR 

numerical simulation (*) and fitted cubic 
(continuous line) 

&-the distance between two neighboring holes re- 
sulting from ($) 

F -the force/unit a m  (Improved Skvor's for- 
mula [6]) 

1 In (AR) - - A R ~  1 - -+ 3 
8 8 

In the considered example: ri = 0.016mm, 4 = 
O.O68mm, F ( ~ / W  = 0.27 x 10-3Ns/m. 

r Design parameters in the case of oval holes 

N(f)-the number  of the ovd holes/mm2 

As application we consider two cases: Nlf) = 250 
and N:' = 500. 
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Fig5 The inner cell and the edge cells in 
the case of aligned oval holes 

(4) and along the boundaries the conditions (5) and 
(6) .  The level lines of the pressure are plotted in the 
domain DSE. The total pressure for the canonical do- 
main is PSE = 0.155625. 

In the case of the domain Dsw the right-hand side 
is supposed to be an open boundary (continuous line). 
Correspondingly the zero pressure condition stands for 
the zero flux condition along this side 

p = 0, along the inner boundary U right-hand side 
3~ 
- = 0, along the remaining boundary of the cell 
an 

and the resulting total pressure is Psw = 0.109702. By 
increasing the lengths of the upper and lower sides of 
the cell by ddl = 0.334 the total pressure is increas- 
ing until value Psw = 0.156771 (the relative error is 
[PSB - PSW 1 / P S ~  = 0.6%). The level lines of the pres- 
sure in this last case are plotted also in the domain 
Dsv - 

Similarly, for the domain DNE the upper side is an 
open boundary side. The initial total pressure is P$, = 

0.093319. By increasing the length of the vertical sides 
by dd2 = 0.3 there results PNE = 0.154206 the relative 
error (as compared with an inner cell) being 0.9%. 
Fig.6 A finite perforated microstructure 
containing aligned holes 

The domain DNW has the upper and right-hand sides 
as boundary opened sides. Thus, this cell is considered 
as a corner cell. Their dimensions result as being dl + 
ddl and d2 + dd2. The level lines of the pressure are 
plotted in the domain DNW and the total pressure is 
PNW = 0.15972. The relative error as compared with 
the inner cell Dsw is 2.6%. 

Let us consider now the perforated planar mi- 
crostructure in Fig.6 containing 12 oval holes and hav- 
ing the upper and right- hand side external lines opened 
and the left-hand side and lower external lines closed. 
The inner canonical cell has the same dimensions as 
before and the corrections ddl and dd2were applied to 
the vertical and horizontal edge cells, respectively, The 
figure includes the pressure level lines obtained by us- 
ing a FEM software. It is clear that the periodicity of 
the pressure holds for the inner cells. The total pres- 
sure of the structure obtained by using the FEM soft- 
ware is PT = 1.872. On the other hand let us denote 
PTl = 12 * PSE. Then PTl = 1.8675 and there results 
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The dimensions of the corrected corner cell are com- 
pletely determined by the corrections of the two sides 
meeting at  the corner point. Consequently, the only 
way to  improve the precision of approximation (under 
2.4%) is to modify the dimensions of the corner holes. 

The presented method is useful in the case of do- 
mains containing hundreds of holes especially when the 
holes' resistance has to be taken into account. 

Remark 2 Other approaches for taking into account 
the real geometry of a perforated microstructure were 
considered by Veijola and Matilla [9] and by Bao et. 
al. [lo]. They add an additional "leakage" term, due to 
perforations , to the classical Reynolds' equation. The 
resulting equation (the "modified Reynolds' equationf1) 
has to be integrated by using a numerical method for 
eve3 specified structure. The advantage of our ap- 
proach of the edge correction is evident: we have to 
modify only the dimensions of the open side cells. 

CONCLUSIONS 

The main accomplishments of this work are: 

0 Analysis of perforated planar microstructures con- 
taining a repetitive pattern of oval staggered holes. 

0 Provides analytical formulas for redesigning a p e  
riodic perforated planar microstructure containing 
circular holes into a structure with a lower squeeze 
film damping based on a repetitive pattern of stag- 
gered oval holes of the same open area. 

Introduction of an edge correction for the perfo- 
rated planar microstructures containing an aligned 
system of oval holes. 

The use of the staggered holes permits a better use 
of material, resulting in a smaller total pressure 
for a given amount of open area. However, in the 
case of staggered holes, we do not know a simple 
method to take into consideration the effects of the 
finiteness of the microstructure. 

ACKNOWLEDGEMENTS 

This work has been supported through NIH grant 
R01 DC05762-1A1 to RNM 
References 

1. ~kvor ,  Z., On acoustical resistance due to vis- 
cous losses in the air gap of electrostatic transducers, 
Acustica,Vol. 19, (1967-1968), pp. 295-297. 

2. Starr, J.B., Squeez-film damping in solid-state ac- 
celerometers, Tech. Digest IEEE Solid State Sensor and 
Actuator Workshop, Hilt on Head Island SC, June 1990, 
pp.4447. 

3. Nayfeh, A.H. and Younis, M.I., A new approach 
to the modeling and simulatiom of flexible microstruc- 
tures under the eflect of squeeze-flm damping, J. Mi- 
cromech. Microeng. ,vol. 14, (2OO4), pp. 170-181. 

4. Homentcovschi, D. and Miles, R. N., Modelling of 
viscous damping of perforated planar micromechanical 
structures. Applications in acoustics, J. Acoust. Soc. 
Am., Vol. 116, No. 5, (2004), pp.2939-2947. 

5. White, F.M., Viscous fluid flow, Mc.Graw, 1991 

6. Homentcovschi, D. and Miles, R. N., Viscous 
Damping of Perforated Planar Micromechanical Struc- 
tures, Sensors and Actuators, Vol. A 119, (2005), pp. 
544552. 

7. Ebert, W.A., and Sparrow, E.M. Slip flow in rec- 
tangular and annular ducts. J. Basic Eng. Tians. ASME 
Vo1.87, (1965), pp.1018-1024. 

8. Homentcovschi, D. and Miles, R. N., Viscous mi- 
crostructural dampers with aligned holes: design proce- 
dure including the edge correction. To appear in Journal 
of the Acoustical Society of America. 

9. Veijola, T., Mattila, T., Compact squeezed-film 
damping model for perforated surface, Proc. Transduc- 
ers '01, Mtinchen, Germany, June 10-14,2001, pp.1506- 
1509. 

10. Bao, M., Yang, H., Sun, Y., French, P.J., 
Modified Reynolds' equation and analytical analysis of 
squeeze-flm air damping of perforated structures, J. 
Micromech.Microeng, Vol. 13 (2OO3), pp. 795-800. 
Copyright © 2007 by ASME


